DEPARTMENT OF COMPUTER SCIENCE AND APPLICATIONS DIGITAL LOGIC DESIGN I YEAR II SEM 2023-24 QUESTION BANK UNIT – I

Short answer questions

S.NO	QUESTIONS	BLOOMS	СО	PO
		Taxonomy		
1	Convert the following decimal number to	BL-5		
	the base indicated			
	a. 7562 to octal b. 1938 to hexadecimal			
2	Find the 1's and 2's complement of the	BL-1		
	following eight digit binary number a.			
	10101110 b. 10000001			
3	Convert (15) 10 to Binary	BL-1		
4	Convert the following decimal number to	BL-5		
	the base indicated			
	a. 17562 to octal b. 11938 to hexadecimal			
5	Briefly explain r's complement with	B1-2		
	example			
6	Convert the following to binary and then to	BL-1		
	gray code (AB33)16			

Long answer questions

SNO	QUESTIONS	BLOOMS	СО	PO
		TAXONOMY		
1	Explain classification of Number system	BL-2		
	with example			
2	a) Represent the decimal number 3452 in	BL-5		
	i)BCD ii)Excess-3			
	b) perform (-50)-(-10) in binary using the			
	signed-2's complement			
3	a) Convert the following numbers	BL-5		
	i)(163.789)10 to Octal number			
	ii)(11001101.0101)2 to base-8 and base-4			
	iii)(4567)10 to base2 iv) (4D.56)16 to			
	Binary			
	b) Subtract (111001)2 from (101011)			
	using 1's complement?			
4	Explain detail about weighted and	BL-2		

	weighted codes		
5	Briefly explain r's and (r-1) complement	BL-2	
	with example		

UNIT – II

Short answer questions

S.NO	QUESTIONS	BLOOMS	СО	PO
		Taxonomy		
1	Which gates are called as the universal	BL-5		
	gates? What are its advantages?			
2	State the associative property of Boolean	BL-1		
	algebra			
3	Define Minterm & Maxterm	BL-1		
4	What are called don't care conditions?	BL-5		
5	State De Morgan's theorem	BL-2		
6	What is meant by karnaugh map or K-	BL-1		
	Map method?			

Long answer questions

SNO	QUESTIONS	BLOOMS TAXONOM	СО	РО
1	Simulify the Declear evenession using K			
1	Simplify the Boolean expression using K-	BL-3		
	$MAP (L5) F(A,B,C,D,E) = \sum_{n=1}^{\infty} (0,1,4,5,1) (172) (25,20)$			
	$\sum m(0,1,4,5,16,1721,25,29)$			
2	Simplify the Boolean expression using K-	BL-5		
	MAP			
	$F(A,B,C,D) = \sum m(1,2,3,8,9,10,11,14)$			
	+d(7,15)			
3	Obtain the a) SOP b) POS expression for	BL-5		
	the function given below $F(A,B,C,D) = =$			
	$\sum m(0,1,2,5,8,9,10)$			
4	Simplify the Boolean expressions to	BL-5		
	minimum number of literals i) $(A + B)(A + B)$			
	C')(B'+C') (ii) $AB + (AC)' + AB'C$			
	(AB + iii) (A+B)' (A'+B')'			
5	Demonstrate the logic gates	BL-2		

UNIT – III

Short answer questions

S.NO	QUESTIONS	BLOOMS	СО	PO
		Taxonomy		
1	Define Half adder	BL-1		
2	Define full adder	BL-1		
3	Define subtractor	BL-2		
4	What is ripple adder	BL-2		
5	What is the truth table of Half-	BL-1		
	subtractor?			

Long answer questions

SNO	QUESTIONS	BLOOMS TAXONOMY	СО	РО
1	Explain detail about half adder and full adder	BL-2		
2	Explain Full binary subtractor in detail?	BL-5		
3	Design and explain 4-bit adder- subtractor and 4-bit arithmetic circuit to perform addition and subtraction using full adders.	BL-5		
4	Design 4 bit Adder and Subtractor circuit and explain its operations.	BL-5		
5	Draw the circuit diagram of 4-bit adder-subtractor circuit and explain its operation	BL-2		
6	Explain The Half adder? Implement the full adder using two half adders	BL-2		

UNIT – IV

Short answer questions

S.NO	QUESTIONS	BLOOMS	СО	PO
		Taxonomy		
1	What is Decoder	BL-2		
2	Define Encoder	BL-1		
3	Construct 4:1 multiplexer	BL-1		
4	Define de-multiplexer?	BL-1		
5	What is priority encoder	BL-2		
6	Define Multiplexer and applications of	BL-1		

	multiplexer?		
7	Difference between encoder and	BL-2	
	decoder		

Long answer questions

SNO	QUESTIONS	BLOOMS	CO	PO
		TAXONOMY		
1	What is multiplexer Explain the	BL-2		
	functionality of a Multiplexer			
2	What is decoder Explain the	BL-2		
	functionality of a decoder			
3	Design for 3 to 8 decoder with 2 to 4	BL-5		
	decoder			
4	Implement the boolean function using	BL-5		
	Multiplexer. [NOV -2019] F (x, y, z) =			
	$\Sigma m (1, 2, 6, 7)$			
5	Explain about demultiplexers	BL-2		

UNIT – V

Short answer questions

S.NO	QUESTIONS	BLOOMS	СО	PO
		Taxonomy		
1	What is sequential circuits	BL-2		
2	What is the operation of D flip-flop	BL-1		
3	What is flip-flop	BL-1		
4	Define Race Around Condition	BL-2		
5	Difference between latch and flip-flop	BL-2		
6	Define Propagation Delay	BL-1		
7	What is Master Slave Flip-flop	BL-2		
8	Explain Shift Registers	BL-2		
9	What are the applications of Flip-flops	BL-2		

Long answer questions

SNO	QUESTIONS	BLOOMS	CO	PO
		TAXONOMY		
1	Design and analyze of clocked	BL-2		
	sequential circuit with an example.			
2	Define Flip-flop and various types of	BL-2		
	flip flops?			

3	Design of shift registers bidirectional	BL-2	
	shift registers,		
4	What is counter design of ripple	BL-2	
	counters		
5	Explain about universal shift register	BL-2	